Abstract:This position paper argues that optimization problem solving can transition from expert-dependent to evolutionary agentic workflows. Traditional optimization practices rely on human specialists for problem formulation, algorithm selection, and hyperparameter tuning, creating bottlenecks that impede industrial adoption of cutting-edge methods. We contend that an evolutionary agentic workflow, powered by foundation models and evolutionary search, can autonomously navigate the optimization space, comprising problem, formulation, algorithm, and hyperparameter spaces. Through case studies in cloud resource scheduling and ADMM parameter adaptation, we demonstrate how this approach can bridge the gap between academic innovation and industrial implementation. Our position challenges the status quo of human-centric optimization workflows and advocates for a more scalable, adaptive approach to solving real-world optimization problems.
Abstract:This paper presents the results of the fourth edition of the Monocular Depth Estimation Challenge (MDEC), which focuses on zero-shot generalization to the SYNS-Patches benchmark, a dataset featuring challenging environments in both natural and indoor settings. In this edition, we revised the evaluation protocol to use least-squares alignment with two degrees of freedom to support disparity and affine-invariant predictions. We also revised the baselines and included popular off-the-shelf methods: Depth Anything v2 and Marigold. The challenge received a total of 24 submissions that outperformed the baselines on the test set; 10 of these included a report describing their approach, with most leading methods relying on affine-invariant predictions. The challenge winners improved the 3D F-Score over the previous edition's best result, raising it from 22.58% to 23.05%.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities across various domains, especially in text processing and generative tasks. Recent advancements in the reasoning capabilities of state-of-the-art LLMs, such as OpenAI-o1, have significantly broadened their applicability, particularly in complex problem-solving and logical inference. However, most existing LLMs struggle with notable limitations in handling graph combinatorial optimization (GCO) problems. To bridge this gap, we formally define the Optimal Thoughts Design (OTD) problem, including its state and action thought space. We then introduce a novel framework, GraphThought, designed to generate high-quality thought datasets for GCO problems. Leveraging these datasets, we fine-tune the Llama-3-8B-Instruct model to develop Llama-GT. Notably, despite its compact 8B-parameter architecture, Llama-GT matches the performance of state-of-the-art LLMs on the GraphArena benchmark. Experimental results show that our approach outperforms both proprietary and open-source models, even rivaling specialized models like o1-mini. This work sets a new state-of-the-art benchmark while challenging the prevailing notion that model scale is the primary driver of reasoning capability.
Abstract:The rise of foundation models has shifted focus from resource-intensive fine-tuning to prompt engineering, a paradigm that steers model behavior through input design rather than weight updates. While manual prompt engineering faces limitations in scalability, adaptability, and cross-modal alignment, automated methods, spanning foundation model (FM) based optimization, evolutionary methods, gradient-based optimization, and reinforcement learning, offer promising solutions. Existing surveys, however, remain fragmented across modalities and methodologies. This paper presents the first comprehensive survey on automated prompt engineering through a unified optimization-theoretic lens. We formalize prompt optimization as a maximization problem over discrete, continuous, and hybrid prompt spaces, systematically organizing methods by their optimization variables (instructions, soft prompts, exemplars), task-specific objectives, and computational frameworks. By bridging theoretical formulation with practical implementations across text, vision, and multimodal domains, this survey establishes a foundational framework for both researchers and practitioners, while highlighting underexplored frontiers in constrained optimization and agent-oriented prompt design.
Abstract:Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address complex, real-world challenges in areas such as logistics and robotics. Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving. This survey provides a systematic examination of how EMAS can benefit from these generative capabilities. We propose a taxonomy that categorizes EMAS by system architectures and embodiment modalities, emphasizing how collaboration spans both physical and virtual contexts. Central building blocks, perception, planning, communication, and feedback, are then analyzed to illustrate how generative techniques bolster system robustness and flexibility. Through concrete examples, we demonstrate the transformative effects of integrating foundation models into embodied, multi-agent frameworks. Finally, we discuss challenges and future directions, underlining the significant promise of EMAS to reshape the landscape of AI-driven collaboration.
Abstract:Unmanned Aerial Vehicles (UAVs) and Automated Guided Vehicles (AGVs) increasingly collaborate in logistics, surveillance, inspection tasks and etc. However, existing simulators often focus on a single domain, limiting cross-domain study. This paper presents the SkyRover, a modular simulator for UAV-AGV multi-agent pathfinding (MAPF). SkyRover supports realistic agent dynamics, configurable 3D environments, and convenient APIs for external solvers and learning methods. By unifying ground and aerial operations, it facilitates cross-domain algorithm design, testing, and benchmarking. Experiments highlight SkyRover's capacity for efficient pathfinding and high-fidelity simulations in UAV-AGV coordination. Project is available at https://sites.google.com/view/mapf3d/home.
Abstract:State estimation remains a fundamental challenge across numerous domains, from autonomous driving, aircraft tracking to quantum system control. Although Bayesian filtering has been the cornerstone solution, its classical model-based paradigm faces two major limitations: it struggles with inaccurate state space model (SSM) and requires extensive prior knowledge of noise characteristics. We present TrackDiffuser, a generative framework addressing both challenges by reformulating Bayesian filtering as a conditional diffusion model. Our approach implicitly learns system dynamics from data to mitigate the effects of inaccurate SSM, while simultaneously circumventing the need for explicit measurement models and noise priors by establishing a direct relationship between measurements and states. Through an implicit predict-and-update mechanism, TrackDiffuser preserves the interpretability advantage of traditional model-based filtering methods. Extensive experiments demonstrate that our framework substantially outperforms both classical and contemporary hybrid methods, especially in challenging non-linear scenarios involving non-Gaussian noises. Notably, TrackDiffuser exhibits remarkable robustness to SSM inaccuracies, offering a practical solution for real-world state estimation problems where perfect models and prior knowledge are unavailable.
Abstract:Information design (ID) explores how a sender influence the optimal behavior of receivers to achieve specific objectives. While ID originates from everyday human communication, existing game-theoretic and machine learning methods often model information structures as numbers, which limits many applications to toy games. This work leverages LLMs and proposes a verbalized framework in Bayesian persuasion (BP), which extends classic BP to real-world games involving human dialogues for the first time. Specifically, we map the BP to a verbalized mediator-augmented extensive-form game, where LLMs instantiate the sender and receiver. To efficiently solve the verbalized game, we propose a generalized equilibrium-finding algorithm combining LLM and game solver. The algorithm is reinforced with techniques including verbalized commitment assumptions, verbalized obedience constraints, and information obfuscation. Numerical experiments in dialogue scenarios, such as recommendation letters, courtroom interactions, and law enforcement, validate that our framework can both reproduce theoretical results in classic BP and discover effective persuasion strategies in more complex natural language and multi-stage scenarios.
Abstract:Federated learning is a specific distributed learning paradigm in which a central server aggregates updates from multiple clients' local models, thereby enabling the server to learn without requiring clients to upload their private data, maintaining data privacy. While existing federated learning methods are primarily designed for static data, real-world applications often require clients to learn new categories over time. This challenge necessitates the integration of continual learning techniques, resulting in federated continual learning (FCL). Although advanced prompt-based continual learning methods leverage pre-trained transformers to mitigate catastrophic forgetting, they do not adequately address the non-IID challenges in federated learning. To address both catastrophic forgetting and non-IID issues, we propose to use masked autoencoders (MAEs) as parameter-efficient federated continual learners, called pMAE. pMAE learns reconstructive prompt on the client side through image reconstruction using MAEs. On the server side, it reconstructs the uploaded restore information to capture the data distribution across previous tasks and different clients, using these reconstructed images to finetune discriminative prompt and classifier parameters designed for classification, thereby alleviating catastrophic forgetting and non-IID challenges on a global scale. Experimental results demonstrate that pMAE achieves performance comparable to existing prompt-based methods and can enhance their effectiveness, particularly when using self-supervised pre-trained transformers as the backbone. Code is available at: https://github.com/ycheoo/pMAE.
Abstract:Federated continual learning (FCL) aims to learn from sequential data stream in the decentralized federated learning setting, while simultaneously mitigating the catastrophic forgetting issue in classical continual learning. Existing FCL methods usually employ typical rehearsal mechanisms, which could result in privacy violations or additional onerous storage and computational burdens. In this work, an efficient and non-IID robust federated continual learning framework, called Federated Prototype-Augmented Prompt Learning (FPPL), is proposed. The FPPL can collaboratively learn lightweight prompts augmented by prototypes without rehearsal. On the client side, a fusion function is employed to fully leverage the knowledge contained in task-specific prompts for alleviating catastrophic forgetting. Additionally, global prototypes aggregated from the server are used to obtain unified representation through contrastive learning, mitigating the impact of non-IID-derived data heterogeneity. On the server side, locally uploaded prototypes are utilized to perform debiasing on the classifier, further alleviating the performance degradation caused by both non-IID and catastrophic forgetting. Empirical evaluations demonstrate the effectiveness of FPPL, achieving notable performance with an efficient design while remaining robust to diverse non-IID degrees. Code is available at: https://github.com/ycheoo/FPPL.